15 research outputs found

    Compact Cas9s and Their Natural Inhibitors for Genome Editing

    Get PDF
    Recent advances with the bacterial CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) defense system as genome editing tools have opened a new avenue for targeting disease-causing mutations. The programmability of the Cas9 endonuclease by RNA makes it a potentially powerful therapeutic tool to correct such mutations. The CRISPR-Cas9 system consists of a Cas9 endonuclease that is guided by RNA (sgRNA) to create double-stranded breaks in a target DNA segment complementary to the guide. This process is dependent on a 2-8 nucleotide sequence (called PAM) that is adjacent to the target and functions as a Cas9 binding signal. Each Cas9 ortholog recognizes a unique PAM. However, factors such as the size of Cas9 or the frequency of its PAM sequence in the genome have hindered its clinical use. The Cas9 from Streptococcus pyogenes (SpyCas9) is commonly used in research because its PAM (NGG, where “N” symbolizes any nucleotide) is present every ~8 bp in the genome, providing robust targeting potential. However, it is too large to fit into typical viral vectors used for in vivo delivery, namely adeno-associated vectors (AAV). While several Cas9 orthologs have been characterized, none satisfied the need for a compact, accurate Cas9 with a short PAM. In this thesis, we use two approaches to identify new compact Cas9 orthologs with small PAMs, one using anti-CRISPR proteins and one by searching through closely related Cas9s. First, we use the presence of anti-CRISPRs (naturally occurring, phage-encoded peptides that inhibit CRISPR-Cas9 described in chapter 2) in a genome as indicators of Cas9s that may be highly active. These orthologs come with the added advantage of having inhibitors that can be used as off-switches. We characterize four Cas9s that are targeted by anti-CRISPR proteins and show that they recognize diverse PAMs in vitro. One of the four Cas9’s, namely HpaCas9 from Haemophilus parainfluenzae, induces efficient genome editing in mammalian cells. However, its long N4GATTT PAM does not satisfy the short PAM criterion. For our second approach, we asked whether closely related Cas9 orthologs with drastically different PAM-interacting domains (PIDs, the domain responsible for PAM recognition) recognize different PAMs, and if so, can be used for genome editing. To this end, we exploited natural variation in the PID of closely related Cas9s to identify a compact ortholog from Neisseria meningitidis (Nme2Cas9). Nme2Cas9 recognizes a simple dinucleotide PAM (N4CC) that provides a high target site density. All-in-one AAV delivery of Nme2Cas9 with a guide RNA into adult mouse liver produces efficient genome editing and reduced serum cholesterol with exceptionally high specificity. We further expand our single-AAV platform to pre-implanted zygotes for streamlined generation of genome-edited mice. Finally, we show preliminary data on how CRISPR-Cas9 can be used for therapeutic genome editing for Amytrophic Lateral Sclerosis. Our new findings promise to accelerate the development of genome editing tools for biomedical and therapeutic applications

    NmeCas9 is an intrinsically high-fidelity genome-editing platform

    Get PDF
    BACKGROUND: The development of CRISPR genome editing has transformed biomedical research. Most applications reported thus far rely upon the Cas9 protein from Streptococcus pyogenes SF370 (SpyCas9). With many RNA guides, wildtype SpyCas9 can induce significant levels of unintended mutations at near-cognate sites, necessitating substantial efforts toward the development of strategies to minimize off-target activity. Although the genome-editing potential of thousands of other Cas9 orthologs remains largely untapped, it is not known how many will require similarly extensive engineering to achieve single-site accuracy within large genomes. In addition to its off-targeting propensity, SpyCas9 is encoded by a relatively large open reading frame, limiting its utility in applications that require size-restricted delivery strategies such as adeno-associated virus vectors. In contrast, some genome-editing-validated Cas9 orthologs are considerably smaller and therefore better suited for viral delivery. RESULTS: Here we show that wildtype NmeCas9, when programmed with guide sequences of the natural length of 24 nucleotides, exhibits a nearly complete absence of unintended editing in human cells, even when targeting sites that are prone to off-target activity with wildtype SpyCas9. We also validate at least six variant protospacer adjacent motifs (PAMs), in addition to the preferred consensus PAM (5\u27-N4GATT-3\u27), for NmeCas9 genome editing in human cells. CONCLUSIONS: Our results show that NmeCas9 is a naturally high-fidelity genome-editing enzyme and suggest that additional Cas9 orthologs may prove to exhibit similarly high accuracy, even without extensive engineering

    NmeCas9 is an intrinsically high-fidelity genome editing platform [preprint]

    Get PDF
    Background: The development of CRISPR genome editing has transformed biomedical research. Most applications reported thus far rely upon the Cas9 protein from Streptococcus pyogenes SF370 (SpyCas9). With many RNA guides, wild-type SpyCas9 can induce significant levels of unintended mutations at near-cognate sites, necessitating substantial efforts toward the development of strategies to minimize off-target activity. Although the genome-editing potential of thousands of other Cas9 orthologs remains largely untapped, it is not known how many will require similarly extensive engineering to achieve single-site accuracy within large (e.g. mammalian) genomes. In addition to its off-targeting propensity, SpyCas9 is encoded by a relatively large (~4.2 kb) open reading frame, limiting its utility in applications that require size-restricted delivery strategies such as adeno-associated virus vectors. In contrast, some genome-editing-validated Cas9 orthologs (e.g. from Staphylococcus aureus, Campylobacter jejuni, Geobacillus stearothermophilus and Neisseria meningitidis) are considerably smaller and therefore better suited for viral delivery. Results: Here we show that wild-type NmeCas9, when programmed with guide sequences of natural length (24 nucleotides), exhibits a nearly complete absence of unintended editing in human cells, even when targeting sites that are prone to off-target activity with wildtype SpyCas9. We also validate at least six variant protospacer adjacent motifs (PAMs), in addition to the preferred consensus PAM (5′-N4GATT-3′), for NmeCas9 genome editing in human cells. Conclusions: Our results show that NmeCas9 is a naturally high-fidelity genome editing enzyme and suggest that additional Cas9 orthologs may prove to exhibit similarly high accuracy, even without extensive engineering

    Anti-CRISPR AcrIIA5 Potently Inhibits All Cas9 Homologs Used for Genome Editing

    Get PDF
    CRISPR-Cas9 systems provide powerful tools for genome editing. However, optimal employment of this technology will require control of Cas9 activity so that the timing, tissue specificity, and accuracy of editing may be precisely modulated. Anti-CRISPR proteins, which are small, naturally occurring inhibitors of CRISPR-Cas systems, are well suited for this purpose. A number of anti-CRISPR proteins have been shown to potently inhibit subgroups of CRISPR-Cas9 systems, but their maximal inhibitory activity is generally restricted to specific Cas9 homologs. Since Cas9 homologs vary in important properties, differing Cas9s may be optimal for particular genome-editing applications. To facilitate the practical exploitation of multiple Cas9 homologs, here we identify one anti-CRISPR, called AcrIIA5, that potently inhibits nine diverse type II-A and type II-C Cas9 homologs, including those currently used for genome editing. We show that the activity of AcrIIA5 results in partial in vivo cleavage of a single-guide RNA (sgRNA), suggesting that its mechanism involves RNA interaction

    Type II-C CRISPR-Cas9 Biology, Mechanism, and Application

    No full text
    Genome editing technologies have been revolutionized by the discovery of prokaryotic RNA-guided defense system called CRISPR-Cas. Cas9, a single effector protein found in type II CRISPR systems, has been at the heart of this genome editing revolution. Nearly half of the Cas9s discovered so far belong to the type II-C subtype but have not been explored extensively. Type II-C CRISPR-Cas systems are the simplest of the type II systems, employing only three Cas proteins. Cas9s are central players in type II-C systems since they function in multiple steps of the CRISPR pathway, including adaptation and interference. Type II-C CRISPR systems are found in bacteria and archaea from very diverse environments, resulting in Cas9s with unique and potentially useful properties. Certain type II-C Cas9s possess unusually long PAMs, function in unique conditions (e.g., elevated temperature), and tend to be smaller in size. Here, we review the biology, mechanism, and applications of the type II-C CRISPR systems with particular emphasis on their Cas9s

    Effect of Spike Lavender Lakhlakhe on Pain Intensity Due to Phlebotomy Procedure in Premature Infants Hospitalized in Neonatal Intensive Care Unit: A Randomized Clinical Trial

    No full text
    Background: A Premature infants undergo multiple painful procedures during treatment; thus, it must be tried to limit complications caused by diagnostic and treatment procedures using simple and practical methods. This study was performed to evaluate the effect of spike lavender lakhlakhe on pain intensity due to phlebotomy in hospitalized premature infants.Methods: This single-arm, randomized clinical trial was performed on 30 infants chosen through convenience sampling method. Each newborn was considered as its own control. For the test group, one drop of pure (100%) spike lavender lakhlakhe was taken by a standard dropper and diluted with 4 ml of warm distilled water by the research assistant. This mixture was stirred at 2-3 cm distance of the newborns’ nose from 60 minutes before until 2 minutes after phlebotomy, such that it could be smelled by the newborns. In both groups, heart rate and blood oxygen saturation were measured by a standard portable device, and the corresponding data was recorded in data collection sheets. Moreover, the infants’ facial expression changes were recorded by a camera and the intensity of pain was measured by Premature Infant Pain Profile before and after the procedure. Finally, the data was analyzed by paired comparison analysis test in SPSS, version 17.Results: Comparison of mean pain intensity caused by phlebotomy in the control and test groups showed a significant difference (7.667±0.311 vs. 4.882±0.311;

    A Broad-Spectrum Inhibitor of CRISPR-Cas9

    No full text
    CRISPR-Cas9 proteins function within bacterial immune systems to target and destroy invasive DNA and have been harnessed as a robust technology for genome editing. Small bacteriophage-encoded anti-CRISPR proteins (Acrs) can inactivate Cas9, providing an efficient off switch for Cas9-based applications. Here, we show that two Acrs, AcrIIC1 and AcrIIC3, inhibit Cas9 by distinct strategies. AcrIIC1 is a broad-spectrum Cas9 inhibitor that prevents DNA cutting by multiple divergent Cas9 orthologs through direct binding to the conserved HNH catalytic domain of Cas9. A crystal structure of an AcrIIC1-Cas9 HNH domain complex shows how AcrIIC1 traps Cas9 in a DNA-bound but catalytically inactive state. By contrast, AcrIIC3 blocks activity of a single Cas9 ortholog and induces Cas9 dimerization while preventing binding to the target DNA. These two orthogonal mechanisms allow for separate control of Cas9 target binding and cleavage and suggest applications to allow DNA binding while preventing DNA cutting by Cas9

    A Compact, High-Accuracy Cas9 with a Dinucleotide PAM for In Vivo Genome Editing

    No full text
    CRISPR-Cas9 genome editing has transformed biotechnology and therapeutics. However, in vivo applications of some Cas9s are hindered by large size (limiting delivery by adeno-associated virus [AAV] vectors), off-target editing, or complex protospacer-adjacent motifs (PAMs) that restrict the density of recognition sequences in target DNA. Here, we exploited natural variation in the PAM-interacting domains (PIDs) of closely related Cas9s to identify a compact ortholog from Neisseria meningitidis-Nme2Cas9-that recognizes a simple dinucleotide PAM (N4CC) that provides for high target site density. All-in-one AAV delivery of Nme2Cas9 with a guide RNA targeting Pcsk9 in adult mouse liver produces efficient genome editing and reduced serum cholesterol with exceptionally high specificity. We further expand our single-AAV platform to pre-implanted zygotes for streamlined generation of genome-edited mice. Nme2Cas9 combines all-in-one AAV compatibility, exceptional editing accuracy within cells, and high target site density for in vivo genome editing applications
    corecore